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Most of the basic logic in our TDFD RCS code was in place at the begin-

' ning of this quarter. Consequently, we have now directed our primary

concern to

1) Improving the computer efficiency of the code.

2) Making changes which lead to increased accuracy.

3) Examining a second canonical problem, a thin dielectric strip, to

verify further the code accuracy.

4) Making the code more user-friendly.

5) Documenting the TDFD RCS code.

By way of Item 2 above, we have recomputed the RCS of a perfectly

conducting rod .5 m in radius, bare and covered by a damper .5 m thick. The

damper is characterized as c/c0 - y/yo - 1, a - ea*/p - 4 x 10 . These

values were selected to give a skin depth on the order of damper thickness

at the frequencies (50 - 500 MHz) for which the calculations were run. The

TDFD code utilized square cells 4 cm on a side or 25 cells to a cylinder

- diameter.

While our TDFD code only treats the TM case, we are able to simulate TE

problems by use of duality. In particular, the above-described case was

rerun with the cylinder perfectly magnetically conducting (a* - o, a = 0),

and the damper unchanged. The RCS obtained in this manner for TM illumina-

tion is the same as one would obtain for TE illumination of an ordinary

electrically conducting rod.

Figures I and 2 show our TDFD RCS calculations for the damped and

undamped electrically conducting rod. Overlaid on these figures are

analytic solutions to the same problem as determined by expansion in
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cylindrical harmonics (see the previous quarterly report for details of the

harmonic expansion). These results should be compared with Figures I and 3

of the previous quarterly report. As one can see, the frequency-domain
6. ripple which had been present on the response of the 'amped rod is now gone. .

This ripple had occurred because the outer boundary of the problem space was

somnehat reflective. Hence, the true solution was "beating" with a

coherent, but specious, echo. We have now found a way to implement a much

less reflective outer boundary.

(Unlike 3D problems, we have empirically learned that 2D outer bound-

aries are least reflective if a pure radiating condition,

• 
-

f(r. t) - g(t -r/c)/ r

is used without a damper inside the boundary. In conjunction with this

houter boundary, the 2D code should not be run with At at the Courant limit,

As/(j2c), but at As/(2c). This empirically discovered combination gives

* less outer-boundary reflection than an impedance boundary, a damped bound-
-1/2

* - ary, a pure r boundary, a Mur boundary, or any other mixture of the

above.)

Figures 3 and 4 show our TDFD RCS calculation for the TE simulation.

. Again, these results are overlaid with the cylindrical-harmonic solution.

These curves correspond to Figures 2 and 4 of the previous quarterly report.

Again, the new results may be seen to be much "cleaner".

This improvement was obtained using the same techniques as the TM case,

but with an additional twist. In retrospect, it is obvious that a perfectly

conducting infinite rod illuminated by a unipolar EMP polarized along the

.. rod axis will carry a d.c. response forever. If the EMP calculation of this

-•  response is stopped suddenly at to, the frequency transform of the result

will be the true transform frequency-convolved with sin(wto/2)/(wto/2). We

are now running the TE-like TDFD calculation long enough that 2/t o is

4
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smaller than any angular frequency of interest and then turning the code off

"softly", say over 425 cycles.

Additionally, we now have results for scattering from dielectric

cylinders .5 m in radius and characterized by e/c0 - 2 or 9. (There is a

S fundamental difference between these two cases. At e - 2c0, the optically

shortest path from one side of the cylinder to the other is through the

* diameter. At c - 9c0 , it is around the circumference.) Figures 5-7 show

overlays of these calculations and the harmonic expansion. It may be seen

that the overlays begin to diverge above 300 MHz, especially for the c 9

case. This corresponds to about 8 cells per wavelength.

Consequently, the dielectric cylinder calculations were rerun with As

reduced from 4 cm to 2 cm. Figures 8-10 show the overlays based on the

reduced As. These new results are considerably improved, especially at the

higher frequencies.

It is our belief that, although great improvement has been achieved

over the past quarter, we are still quite far from achieving the ultimate

* accuracy TDFD can provide. We especially hold this opinion with respect to

eliminating the broad frequency-domain ripple appearing on our latest cal-

culations for the bare-rod TE simulation.

Figures 11 and 12 present overlays for the second canonical problem,

Item 3, TM scattering off a dielectric strip .025 m thick, 2 m wide, and
characterized by a - 0, er - 2. This data represents the monostatic RCS for

a 45* angle of illumination with respect to the strip's major faces. The

TDFD curves in these figures are based on 4 cm square cells. At the higher

frequencies, 2 cm cells would doubtless improve the code-code agreement.

The frequency-domain calculation is not strictly canonical, but is actually

a modified Galerkin solution with three complex waves included to represent

the strip behavior in the width direction. This frequency-domain solution

is due to Richmond, and was brought to our attention by Dr. Stovall.

With respect to Item 4, we have now implemented some user-friendly

graphics so the worker has a visual representation of the problem being *

7
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solved. For example, Figure 13 illustrates the cell occupancy by conductor

or damper for the damped electrically conductin6 rod upon which Figures I

and 2 are based.

Lastly, there is Item 5, the matter of TDFD RCS code documentation.

OL The remaining pages of this report constitute our first draft of this task.
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Architecture of the Time-Domain Finite-Difference RCS Code

Equations to be Solved
.N

We assume in this study that electromagnetically linear conditions

' prevail. Then the total field can be separated into an incident field

(which would be the field in the absence of the scatterer) and a scattered

-} field (the field modification caused by the scatterer's presence):

T T inc inc scat scat
CE HT  C H +(E H (1) 

Under the linearity assumption, both the incident and the scattered fields

individually satisfy Maxwell's equations.

If some background dissipation (ab, <b) is present, the incident fields
* will obey

Oi n c

V x Einc PO inc * inc (2* x - ~ abH (2)
Po at .-

ibnin

Hinc aE + inc
at

In the presence of an anisotropic scatterer with frequency dependent

properties, the total fields conform to

T T
V x ET  *H H ft .11 T(t') ( 4)V -X E - - " - - K(ttI) * at' dt' -

18
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TET t 0ET W)
V xH = " -t + c ET + K(tt') t' f (5)

at - t t 5

4%,

4 Subtraction of the first pair of equations from the second leaves us with

the version of Maxwell's equations obeyed by the scattered fields:

scat scat
S"Escat o s aaH *t KH W')V~ a scat t _ m= t_

at - ( ) * at, t

-H
i nc *t - Hinc(t°)
at- *0  *b in c  t )f a t'.( - I IH° " t (Oo lo)• K(t a t" dt '

.L-

-Jf (6)

scat aEsc at t tEscat (t )
VxH = + -O E + f K(t-t') • E t) dt'

aEinc t aEinc (t)
+ ( I) "*--- + (a -inc K(tt t' dt'

__ at b CO= at,+JKt-'

+ J f (7)

It is convenient to represent the inhomogeneous parts (or incident

parts) of eqs. (6) and (7) as

N' .

[jT*] n - L] [HS 
"J + [Jf] + [V X Escat -

19



- -" b. r~ .'*- rr

1,,-J~][H] +c [o 11 ai[

(K -t')[H 1 (t')Jdt + [if + (V x Esat (8)

T S x scat.[- I [a0][E ]+ [J [V H

inc inc

[c - ,o][E in + [Oo* - ab][E ]

+_[K(t-t')][Einc(t)]dt ' + [V scat ]  (9)

Thus, [H] and [E ] become

*t

) p..

_o

* [En * _
s c a t

[R[K]-t ) (t' ]dt + [J ] [ (13)

. ' [HS ] 
= - Lr ][Hie [R*It. [H i e 

- :[A(t-t')][Hin(t')]dt' (10)

S incincEinc

.. In the last pair of equations, we have defined /

I [k* J [ao] [,p- to (12)

S* *1 *- *
"'.[R ] - [O'o1 [°a" °"b] (13) ,

I.

20
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,S.-

...

[A*] = [c'*]l[K 1  (14)

[r] [0]-o [] - E0  (15)

-1
[R] [ao]-[a - Ob] (16)

[A] [00] [K] (17)

Substituting eqs. (8) (17) back into (6) and (7) yields

scat scat

8Hca * * scat + ft* *t 81 t'
" at + *_t dt' - j (18)

sat sc=at,
LO Esc a t  s  cat t aE scat (t') = T

"a + _ " Escat + K tt' t' dt' = (19)

.at,

These are the scattered field equations we will be treating.

21
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Method of Solution

For now, we shall only concern ourselves with the 2D TM case. Thus,

E E and H will be present. Equation (18) reduces to a scalar equation,
x y z

but (19) remains a two-component vector equation.

Figure 14 illustrates a typical TDFD 2D unit cell, and shows where the

three field components associated with that cell are located.

In Appendix 1, we will derive a technique for solving this equation

system using first-order exponential differencing. The result of this

appendix is that, if we omit frequency dependence, HZ(I,J) is advanced ""

.. according to

"i-1* 1*at -"'-*

n+l - oAt "P 2At
Z(J = e HZ(I,J) - (1 - e )(a 1 (li) (20)

and [E(I,J)] is advanced according to

n-1/2 [-[ O][]At n-1/2
[E(IJ)lni/2  e [E(I,J)]l/

([I] - e -[ )[0l T(l,J)]n (21)

- (The complication of frequency dependence will be considered later.)

As we have said, [a0 ] is permitted to be anisotropic. In the actual

code, it is represented by a total of five arrays:

22
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YJ

YO (J+ 1

UEY (I, J) YC(J)Q
HZ( IJ)

P EX( CI, J)
L~ X, I

XOCI),YOCJ) XCI) x 0C(+ 1

Figure 14. Location of field components in a
unit cell.
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SGX(I,J) is the bulk value characterizing the xx component of the

conductivity tensor at cell (I,J)

SGY(I,J) is the bulk value characterizing the yy component of the

conductivity tensor at cell (I,J)

-

SGXY(I,J) is the ilk value characterizing the xy and yx co:mPonents of

the conductivity tonsor at cell (I,J) (gyrotropic materials are not

permi tted in thL present code)

SGCX(I,J) is the surface conductivity in the x direction on the y-

facing surface of cell (I,J)

SGCY(I,J) is the surface conductivity in the y direction of the x-

facing surface of cell (I,J)

Thus, the actual conductivity seen by Ex at cell (I,J) is given by

0o(I,J) = (SGX(I,J-l) + SGX(IJ))/2 + SGCX(IJ) (22)

Oao(IJ) = (SGXY(I,J-l) + SGXY(I,J))/2 (23)

ao (I,J) = (SGXY(IJ-l) + SGXY(I,J) 2 (24)
yx

o0 (IJ) = (SGY(I,J-l) - + SGY(I,J)- I 1 2 (25

This arrangement occurs because J sees the xx and xv conductivities in

parallel, while J sees the yx and yy conductivities in series.
* y

The conductivity matrix for E at cell (I,J) is analogously described

24
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C0(I,J) = (SGX(I-1,J)-1 + SGX(I,J) -1)-1  2 (26)

0°(I'J) = (SGXY(I-lj) - + SGXY(I,J) -1)-I 2 (27)
-ry

'ia0 (I,J) = (SGXY(I-I,J) + SGXY(I,J))/2 (28)

ao(IJ) = (SGY(I-l,J) + SGY(I,J))/2 + SGCY(I,J) (29)

Note that, although the physical conductivity tensor is symmetric at

each cell (SGXY(I,J) = SGYX(I,J)), the mathematical conductivity just

described is not symmetric (o0(I,J) C O0 (IJ)y).
xy yx

The dielectric properties of the scatterer are represented by five

analogous arrays, EPX, EPY, EPXY, EPCX and EPCY. These are combined

in the same way to form the mathematical permittivities c (I,J)i j at the Ex
and E evaluation points of cell (I,J).

y

* Due to the anisotropic cross-terms, it is necessary to know E at the
y

E evaluation points. This is done by simple linear interpolation,x

EY(I,J) x  (EY(I,J) + EY(I+l,J) + EY(I,J-I) + EY(I+1,J-l))/4 (30)

. E at the E evaluation points, EX(I,J) is obtained the same way. Thex y y
matrix difference equation (21) is then solved twice at each cell and each

time step, once centered at and to advance EX(I,J), and once centered at and

to advance EY(I,J).

The following notation is also used:

25
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QXX(I,J) is the (1, 1) component of e- f)[OA evaluated at the Ex
points

i".'

55%"

-1
-[e] [o0 ]At

QXY(I,J) is the (1, 2) component of e evaluated at the E

x

points

iE]j [o 0 ]At
QYX(I,J) is the (2, 2) component of e evaluated at the E

y
points

.[] 1[ ]At"
QYX(I,J) is the (2, I) component of e evaluated at the E

points in-[[El][l 0 ]otA-

QXX(I,J) , theY(IJ ) nn n YY(IJ) are [.] .e t

corre s ly located and defined.a

a

* -TAX(,), TUYI,) AY(IJ n"TUY J are] [] [t -i~

RXX(I,J), RXY(I,J), RYX(I,J) and RYY(I,J) are [Co] [00 a b]

analogously located and defined.

S
It is necessary to evaluate both components of [E as given in eq.

* (11) at both E and E points in each cell. The above conventions indicate

,x y

how to combine the co and c. tensors for an inhomogeneous scatterer so this

complete set of evaluations may be achieved. In particular, we denote E

SS xy
anas E evaluated at the E mesh point and E as E evaluated at the E mesh

Thus, E (IJ) is, from eq. (11),
xx

26
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S *inc *incE xx(I,J) =-TAUXX(I,J)E xx(I,J) -TAUXY(I,J)E xy(IJ)

inc inc- RXX(II,J)E (I,J) - RXY(I,J)E (IJ) (31)
XX xy

Inc inc
*where E xx(I,J) is .the analytically specified E x field evaluated at E

mesh points, and E nc(1,J) is the analytically specified E icfield
xy Sy

evaluated at E mesh points. Additionally, E (Ij) is
x yy

S *inc *incE (1,J) -TAIJYY(I,J)E (I,J) -TAUYX(I,J)E (IJ)
yy yy yx

inc inc
-RYY(I,J)E (IJ) -RYX(I,J)E (IJ) (32)

yy yx

where E ic(I,J) is the analytically specified E icfield evaluated at the E
Yyyinc yy

mesh points and E yx(I,J) is the analytically specified E "' field evaluated
yx x

* at the E mesh points. Finally, E (1,J) and E (I,J) are, in analogy with
x xy yx

* eq. (30),

S S S S SE (1,J) (E (I,J) +E (I+l,J) + E (I,J-l) + E (I+l,j-l))/4 (33)xy yy yy yy yy

E S(I,J) -(E S(Ij) +E S(I,J+l) + E S(I-l,J) +E S(I-l,j+l))/4 (34)yx xx xx xx x

It is also necessary to evaluate both components of TJ as given in

*eq. (9) at both E and E points in each cell. Using the same convention asx y
T T T Tabove, we let J be J evaluated at the E points and J be J evaluatedxy y x yx x

27
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T
at the E points. Then equation (21), where [J is actually required, uses

y
[JT in the form

-1 11T I [S] [o-1 pf 01-1 ( HS cat (5

S TWe have already described how to find the [E ]contribution to [J] It is

easy to evaluate [col - [JfI because Jf~ is a prescribed analytic forcing term

which can readily be evaluated at either the E or the E points. Thex y
troublesome term is [V x Hsa J. This will have both an x and a y com-

ponent, each of which must be evaluated at the E and the E points.x y

Let us designate (V x HS ca as the x-component of this term
_ xx

evaluated at the E points:
x

( Hs cat. HZ(IJ) - HZ(IJ-l) (6
(VxH x Y(J) - Y(J-l) (6

The y-component evaluated at an E point isx

scat(V xH )
xy

1 (HZ(1+1.J) + HZ(I+l.j-l)) - (HZ(I.J) + HZ(IJ-1))
2 2(X(I+l) - X(I))

+(HZ(I.J) + HZ(IJ-1)) - - (-1.) + HZ(I-.-)](7

The y component evaluated at an E point is
y

(VxHscat HZ(I.J) -HZ(I-l.J) (8
(Vxl ) - X(I) -X(I-l) (8
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and the x component evaluated at an E ypoint is

(Xscat)
- yx

1 (HZ(I.J+l) + 1-Z(-l.J+l)) - (HZ(I.J) + HZ(I-1.J))
2L 2(Y(J+l) -Y(J))

+(HZ(I.J) + HZ(I-l.J)) - (HZ(I.J-l) -HZ(I-(39)))
+ 2(Y(J) -Y(J-l)) (9

Consequently, for example, eq. (21) for advancing EX(I,J) in all its

glory, becomes

EX(I,J)n~/ QXX(IJ)EX(IJ) n/2+ QXY(I,J)EY(IJ) 1x

S n S n
+(1I QXX(I,J))E (IlJ) -QXY(I,J)E (Ili)

xx xy

SXX(IJ)(Jf(IIJ) - (V x H- sca n
f _ xx

-SXY(I,J)(J (IJ) n (V x Hs ca n40
f xy xy (0

where QXX and QXY are defined after eq. (30), EY(I,J) is defined by eq.
x

S(30), E xx(1,J) is defined by eq. (31), ESX (IJ) is defined by eq. (33), SXXL

and SXY are defined after eq. (30), Jf(IlJ) and Jf(IJ)x are the forcing

scat sat*currents, (V X Hi is defined by eq. (36), and (V x Hs' is defined
XX xy%

*by eq. (37).%

29



The scalar equations for advancing HZ(I,J), eq. (20), is much easier to

5 implement than the matrix equation for advancing [E(I,J)j. We now need to

define

XfUZ(I,J) as the bulk permeability at cell (1,J), pu of eq. (4), W.

SGMZ(I,J) as the bulk magnetic conductivity at cell (1,J), co of eq.

(4),

• -l

QMZZ(IJ) e -XMUZ(I,J) • SGMZ(IJ) • At (41)

SMZZ(I,J) = (I QMZZ(I,J))/SGMZ(IJ) (42)

TAUMZZ(I,J) = o (y.- o) (43)

evaluated at the center of cell (I,J), and

RMZZ(IJ) - *-I * * (44)

RMZZ(IJ 0 -o (° b )  
" -

also evaluated at the center of cell (I,J)

The murderously complicated interpolations involved in advancing E do not

occur in advancing H partly because H is the only component of H present,
z z

and partly because H is evaluated at the center, not on an edge of the

" cell.

From eq. (10), HS (Il,J) is then
zz

S .nc inc
H (IJ) = TAUMZZ(IJ)H in(I,J) RMZZ(IJ)Hzz (I,J) (45)

inc inc
where H (1,J) is the analytically specified H field evaluated at the

zz z
cell centers.

One also need only evaluate J z(I,J) of eq. (8) at the cell centers.

Equation (20), where J *T(I,J) actually appears, uses the form
z
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I *T S
(CO) JTz(fJ) H - z{z(IJ) + (C0) J 1,)z

+ ~-l scat

+(CO) (V x E )zz (46)

S*

Here, we already have found H z (I,J), J f(I'J) z is a prescribed magnetic

current density (which would be zero on any physically real problem), and
scat(V x E )is justzz

(V~cat) EY(I+1,J) - EY(I,J) EX(I,J~l) - EX(I,J)
zz X0 (I+l) - X0(I) Y0(J+l) - Y0 (J) (7

Thus, eq. (20) for advancing HZ(I,J) becomes

HI- ~l QZ(I,J)HZ(IJ 1 QtZZ(I,J))H S( 1 ,J) n+1/
2

zz

SMZZ(I,J) (j (I,J)n+1/2 + (V )< (48) n1/
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Introduction of Frequency Dependence

Let us assume the frequency-dependent term in Eq. (19) has a kernel of

the form

M

m=1

where a has the units of conductivity. This assumption is equivalent to

expanding the frequency-dependence of the material's electrical properties

in a Prony series under the constraint that all the poles be on the real

axis. (Appendix 1 indicates how one may relax the real-poles-only

constraint.)

Equation (19) then becomes

i E scat i jscat _jT

" Bc + C "Escat +  a • a (50)=O at =m m -
m=1

where

scat
jsat(t) = e m f e dt' (51)
-m -t at

TIn eq. (50), T is still given by eq. (35), but with the understanding that

ES has the frequency-dependent term restored. In other words, ES is now

represented by eq. (11), not eqs. (31) and (32).

scatThe J of eq. (50) are not clearly identifiable either as conduction

or as displacement currents. We shall coin the name "Prony currents" for' thm qain(0 ~ scat
them. Equation (50) for J (t) is much easier to recognize if we dif-
ferentiate it once; its homogeneous solution is just a decaying exponential:
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aJscat aEscat
-M + Jscat . (52)

at rnr at

In the 2D TM case, the components of eqs. (50) and (52) then comprise
scat scat

2(M+l) coupled first-order differential equations for E and Jsa

Ideally, these equations should all be advanced from (n-I/2)At to (n+I/2)At

simultaneously each cycle. A technique for doing this is also described in

Appendix 1.

However, the present code actually implements a slightly less accurate
i" Esca t  

..

" algorithm where E alone is advanced first in each cycle, and then the

scat
j are advanced separately. Finally, a correction is made to the ad-

in scat
vanced E to account for the effects of the J-m

At this point, it is most instructive to go back to eq. (7) and perform

a rearrangement:

Escat aEinc

scat B +Escat BE

tat+ - (' ) at

* T

+ (go -ab) 
E  + fK(t-t') - , + Jf (53)

The inhomogeneous part of this equation can be written

T ±[P -S P X scat P
[j j = [o0 ][E ] + [JI] + [Jf] [V x ] + [J 1 (54)

S P
where [ES ] and [JP] are

[ES ] ,, lIinc] [R] inc] (55)
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V.

[JP f [K(t-t')][ )dt '  (56)

with [r] and [R] still respectively given by eqs. (15) and (16).

Substituting eqs. (54)-(56) back into (53) then results in

aEscat
"o + 0 "scat _J P (57)

This equation is just (19) with the frequency-dependent term transferred to

the right and represented as JP. It is advanced according to eq. (21):

" "[ ] ~~-l[ ] t i-/

[E(lj)]n+1/ 2 = e ] OAt[E(IJ) n-/2

-[C] [aO]At
([I] e )[ao]-[jT(1,J) + J (I,J)]n (58)

The problem with direct application of this procedure is that we do not
P scat

know the portion of J associated with E at nAt until we have advanced

the Prony currents, and we cannot, strictly speaking, do that until we have
scat

advanced E

As mentioned previously, the code does not presently utilize the proce-

scatdure described in Appendix 1 for simultaneous advancement of E and
scat scatj Rather, we first find an intermediate value of Es obtained with

effects of the Prony currents omitted:

mt -[e ] [ao]At
[E(I,J)] - e [E(I,J)]n - /2
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-k%

-[e l-[a0 At -1 T (59)-([I] -e ) [ao] l[jT(l,J) ]n(9

The procedure for obtaining this intermediate value is identical to the

procedure described in the previous section for advancement through a total

*" cycle in the absence of frequency-dependent effects. Its implementation in

the code is also identical to what was described in the previous section.

Let us next turn to the advancement of the total Prony current J as

given by eqs. (49) and (56):

• M

a • (60)-- =m --m

m=l

where

T
•T - mt t E (t ') m6t '

S (t )  e  at' e dt' (61)
m 0

Equation (61), like (51), is made more recognizable by differentiating with

respect to time:

T  T inc scat
am T aE a(E + Es- + PT - = (62)at m-m at t

The equation for exponential-difference advancement of this result is

T n+1/2 _ At Tl n-1/2
J (IJ) -e m J (IJ)-M -
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-'6 Atm t (*inc * scat n/ m "

+ (1 - e )(L (I,J) + E (I,J))n/B (63)

The incident field i is a specified analytic function. At present, the

*scat ,Jn
code evaluates Es (Tj) as

int n-1/2
F(I, J) E(Ij)

*scat (  n (64)
E AtJ)4)

Equations (63) and (64) may be combined to give an expression for
T (Ili)n+l/2 in terms of known quantities. We can then determine J P(I,) n

-In
06 as

P (Jn [nT( l/2 T n-/
P(Ili) n = [am(I,J)] [J(Ij)+ + j (i)n ]/2 (65)

m m-

Subtraction of eq. (59) from eq. (58) then permits us to advance

[E(I,J)] from its intermediate value to its value at the new time step,

(n+l/2)At:

,[E(ij)n+1/2 = [E(I,J)] in t

-l
" [1 6 .]  [ c° ] A t - 1 P

- i - e [[0] t [JP(lJ)] (66)

Frequency dependence in the magnetic properties of the material can be

treated in an exactly dual manner to what we have just described for the

electrical properties.
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At present, we have not coded up magnetic frequency dependence, nor

have we combined frequency dependence with off-diagonal type anisotropy.

Both these generalizations would be perfectly obvious extensions of what has

been done, but we cannot conceive a cannonical problem we could check the

results against.

Not mixing off-diagonal anisotropy and frequency dependence means we

only treat diagonal a tensors. If eq. (65) is substituted in eq. (66), we

ot a in

-1
n/2[] [ 0 ]At[E(I,J)] n I /  [E(I,J)] i n  ([I] e)".

M

[SA (i,J)][JT(Ij)n+I/2 + J (67)

m=l

where

-1
* [SAm(I,J)] = [ao(IJ)] (Am(Il,J)] (68)

In the actual code, two arrays are used to describe the material ef-
-i

fects of each term in the Prony series. Let 0 o(l,J) represent the xx

element of the inverse of the matrix described by eqs. (22)-(25) at cell

(Il,J). Let c0 (IJ) similarly represent the yy element of the inverse of
yy

the matrix described by eqs. (26)-(29) at cell (1,J).

Moreover, let AAMN(I,J) represent the xx element of the mth Prony

. tensor of the bulk material at cell (I,J), and let AYANY(I,J) represent the

corresponding yy element. Then the xx element of [SAm(I,J)] which actually
Trelates the x component of j (IJ) to the x component of E(I,J) is called

-m3

3 7



del

SNLX(IJ) = a0 (I,J) (AAHX(I,J-l) + AAM(I,J))/2 (69)I, xx

Similarly, the yy element of [SA m(I,J)] which actually relates the y corn-

ponont J T(I,J) to the y component of E(I,J) is called e

SAMY(I,J) = 0 (IJ) (AAMY(I-l,J) + A.A'MY (I,J))/2 (70)
yy

* In keeping with our simplification of not mixing off-diagonal anisotropy

* with frequency dependence, we ignore any possible off-diagonal nonzero

values in [SA m(IJ)].

It turns out that only SAMX(I,J) and SAMY(I,J) need actually be stored.
That is, it is not necessary to assign arrays for keeping coIJ-l

00 (IJ) ,AAMX(I,J) and AA.NY(I,J).
yy,

I Consequently, the actual equation used in the code for implementing the

x-component of the Prony correction is

* ~EX(I,J)n~/ EX(I,J) m

M

-(1I Qxx(IJ)) )SAMX(I,J) XjMSX(I,J)n (71)

* where

XJM X(Ij)n =[T( 1 ,J)n*l/
2  T 1T1~~/ 2 /2 ()

m x m x

9
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Similarly, the actual equation used for implementing the y-component of the

Prony correction is

EY(I,J) n+1/2 =EY(I,J) int

pM

-(1 QYY(IJ)) SANY(I,J) XJMY(I,J)n (73)

where

JM(l n 1 T (Ili) n+1/2 + JT(Ili) n- 1/21]/2 (74)

XM(J) m y m y
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Transformation from the Near-field Time Domain to the

Far-field Frequency Domain

The foregoing work described the determination of the scatterer's

electromagnetic response and associated near fields. We are actually inter-

ested in the RCS, which is a far-field quantity. Now we shall describe how

the code extracts the RCS from the near-field results. In this process, we

also transform from time domain to frequency domain.

Any electromagnetic field can be expressed in terms of an electric and

. a magnetic vector potential, A and A*. These vector potentials (in the

frequency domain) obey the inhomogeneous wave equations.

V 2A + k2A = -OoJ (75)

V 2 A + k2A -O (76)

Here J is the fictitious magnetic current density often found useful in

manipulating Maxwell's equations. Equations (75) and (76) can be general-

ized to apply to any linear medium, although we shall find their free-space

form adequate for our uses.

In 2D, we define the far field to be the region where all fields drop

off as r i.e., where all the faster falling terms have vanished. We

can then separate the electric and magnetic fields into two parts,

-"7
t

E = E + E (77)

.°

H-H +H (78)
e -m
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The e-subscripted parts are associated with the electric vector potential A,

and the m-subscripted parts are associated with the magnetic vector poten-

tial A In particular, if we call 'Yo and Z o the admittance and impedance

of free space, we can show in the far field that

H =V x A/ o= iYo i x A (79)

E M V × A /c o =iwZoi r × A (80) .

E =iwA t =iW(i A + i A Z )  (81)
-e

H iA = i(iA + iA) (82)
lil -m t ~

-m t iwz z

S Here, a t subscript indicates that only the transverse components ( and z)

are retained. Equations (79)-(82) are analogous to 3D formulas, and depend

on the fact that

i(kr-wt)e (83)

jr

is a valid far-field frequency-domain 2D solution of the wave equation even

if the more general

f(t - r/c) (84)

Jr

is not a valid time-domain solution. These equations tell us that if we can

evaluate A and A , we can find the 2D RCS without undue complication.
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In two dimensions, the Green's function for the scalar wave equation

in the frequency domain obeys

V 2G(rlr') + k 2G(rlr') = _-r') (85)

where r is the scatterer location and r' is the observer location. This

-. equation has solution

G(rlr') = - H o(kR) (86)

Thus, at least in cartesian coordinates, A and A become

-H (kR)
w~',) = JL0 !(K,wo)dr (87)

(I) 4."'

H(1) (kR)

For the far field region, G(.KIX') asymptotically approaches

G~rlr2 e '~~ ikR (89)
4 |i kR)

* This expression may be further manipulated by letting r' replace R in the

* denominator of the radical. The phase term requires a bit more care:

kR (' - j )j kr (kx cos' + ky sino') (90)
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where

1 coso' + jy sinoe (91)-r _x

is a unit vector pointing from the target to a far-field observer.

Using these expansions, we can rewrite the formula for A in the far -

field as

Poe~i/ ikr' Ff~ )ik(x coso' +y sino)d_(2
4 ?rnkr' f

A corresponding expression exists for A (',). The far-field expression

*for E then becomes

E (,c)=ico A~('w

iwuoe- 3ipr 2 ikr' JJJ r f ik(x coso' y Y - (93
4 kr' e -t -, 93

Similarly, H mbecomes

H (r',w) =iwA (r' , c)
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-3iir/4 -

d-m

iw!4 i r' e( ,~ i~ os ' + y sin ' dr (9 4,)

- Analogous formulas exist for E and H .,"

Equations (93) and (94) are not directly applicable to the output of

our 2D Maxwell solver as these equations demand the frequency-domain J and

J*, while the Maxwell solver outputs the time-domain currents.

Let us say we want E (r' ,co ) where oq is one of Nq discrete frequencies

of interest. We can then write

E (r', -3 i~r/ 4  ik r'-i"E (reWq q

e q 87r ----- e q

q qfjWqt ik'• _"

dt Jf it(r,t)e -q dr (95)

where k' is the wavenumber pointing towards the observer at w and where we
-q q

have interchanged the order of time and space integration after replacing

J (r,w) with its inverse Fourier representation.
-t

. Analogously, H(r' ,w becomes
_m q

-3 i7r/4 ikr":"~~1 Hc~ q) i oe  ik r'

• .' - r k'r' e q"
q
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ti

j- t ik' r r
fe q dt ff Jt(r,t)e -q dr (96)

Equations (95) and (96), and the two companion equations for E and -e

are in a form which is compatible with our time-domain Maxwell solver.

Taking the time integration outside the space integration is vitally impor-

tant to the efficiency of our algorithm. Were this not done, Jt(r,t) and

J (r,t) would have to be Fourier transformed at every point before being

integrated over space. The form of eqs. (95) and (96) replaces this enor- -.

mous computation with a single Fourier transform on the result of the space

integral.

If we let Jscat represent the total current (conduction, displacement

and Prony) associated with the scattered electromagnetic field (see eq.

(53))

scta cat s ca Eincscat a E + 0 "scat + ( - o) at0

T
inc t E (t')

* + (Co - 1%) " -inc + f K(t-t') t dt' (97)

scat
and if we substitute J for J in eq. (95), E of eq. (95) becomes the

sca t -t e
scattered field E of the first section unless magnetic materials are

present. That is, cat integrated over the scatterer cross-section accord-

scat
ing to eq. (95) gives E in the absence of magnetic materials.

Escat(rw 
r' 2

RCS(wq) - 2i -e - (98)qiq I (r',wq)

q

In this convention, A and E are zero.- m
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However, it is possible to replace the area integral of eqs. (95) and

(96) with a contour integral by means of Huygens principle. In particular,

let S be a closed contour which completely surrounds the target. (For

instance, let S be a rectangle defined by x - x1 ,x2 and y - Y1,Y2.) Let

Escat and Hscat be the scattered fields which our Maxwell solver predicts

will exist on S due to the time-domain illumination. Let n be an outward-

pointing unit normal on S. If we then remove the scatterers and its

currents, but let an electric surface current

K= n X Hscat (99)

and a magnetic surface current

* _ n EscatK n x E(100)

- flow on S, the scattered electromagnetic field will be replicated outside S.

* This means the area integral of eq. (95) may be replaced by

-ik' rscat. . q -p iscat~t
E (n x HS t(r ,t)) e As -I t (101)
p - t p-- t

where the summation over p represents integration over the finite difference

cell edges which lie on S. This summation is represented by I because it

has the dimension of amperes. In the actual code, it goes by the name

XIEST
q

Analogously, the area integral present in eq. (96) for H (1:,wq) can beM q
written

46

P iF

'. "" \'. "' " ""-,'" ".'" -" -""- 4. "-'.'. ", . , -,-. -.-. - ,** ' .- : .-.. ' .. ' ' . ' ' .- ,-.-. ' .-.-.-. .'*



-ik' r
E ( XE scat ( e -q -p _scat (t)(
p ×p t p -q t(102)

(Remember the t subscript on I, I*, or anything else implies evaluation with

S the r component omitted.) In the code, this variable is called XIMSTq

scat
Equations (95) and (101) indicate the z-component of H is as-

sociated with the 0-component of E (' ,q). The O-component of Escat in eq.

(102) has the same association, as the cross with i in eq. (80) proves.

These scattered fields are the TM solution.

Analogously, the #-component of H scat in eq. (101) and the z-component

of Escat in eq. (102) relate to the (decoupled) TE solution, which we are

not treating in detail at this time.

Let us use I scat(t) to denote this "current" evaluated from the
-q t scat (t)*n+l/2

finite-difference code at nAt. Let us analogously denote Isc t

As the finite-difference calculation progresses, we can then keep running

summations for each frequency w

* qscat( n scat) jW qmAt

Q -qI (t), e q At (103)

'-n ejwq(m+l/2)At
scat *n -1/ q t)

scat) -n1/ scat *m+l/2 q(m12&
ml( q Wt e At (104)

When the time-domain finite difference calculation is complete, these Q's

will then respectively contain quantities which are directly proportional to

the electric and magnetic contribution to the RCS at w . Note that it is
q

only necessary to backstore 2N complex quantities during the time-domain
q

finite-difference calculation in order to preserve all the information

necessary to generate a monostatic RCS as a function of w.
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The symbol Qis used in eq. (103) because it represents a quantity with

units of coulombs. In the code, it is written SIEST The scattered
sctq

electric field associated with Q (t)t is -"

-3i7r/4i~ ~ ~ ~ 1 PoeeS~t 8 _ ik r'
scat ) = e q scat( (0Eq 'W 2 t  (105) "

Then o ded tra t he Analoously, f th isscat d qanetiyfied associhe wris
normalized out. Analogously, the scattered magnetic field associated with
scat *
q (t) is

q t

HscatrW Coe 3 i/ ik r'

scat 2 q scat *CO
qq (106)

In the code, the z-component of this quantity is HZMS when jr' is normal-
q

ized out. The scattered electric field associated with the magnetic current

is obtained by combining eqs. (80) and (106),

Escat (rw e _ iwe3 ' 2 ik r' , x gscat *(~ -m , 'Wq - e q r q ()(107) -
*-m - q Birc Vikr' -r q

qr

In the code, the O-component of this quantity, less the Jr' factor, is

EPMS
q

The radar cross section then becomes

i "  '"I " s c a t ~ -E c a t 2
( ' + Es _1', )) r

RCS(wq) - 2i] ct q) (108)i i E(.r', , )
qq
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In the code, SGATXE is the E sctcontribution to the ratio inside the
absolute value signs, and SGATXM scat cnriuiosq e
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APPENDIX 1. SOLUTION OF THE TENSOR WAVE EQUATION

Let us consider the case where anisotropy, but not frequency depend-

ence, is present,

[c] D[E] + [c0 ] [E] =[J] (Al)

This matrix differential equation has a homogeneous solution

[E]h e (A] (A2)

and a particular solution

[E) [ao] [J] (A3)
p

giving a general solution

-1
If.) [u0 ]t -

[E] =e [A] + [ao] [I(A4)

The constant vector [A] may be evaluated at (n - /2)At:

[E] n-l/ [A] + [col nj] (A5)

L This gives the new E-field vector in terms of the old,
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